Open Access Library Journal
2025, Volume 12, €13270
ISSN Online: 2333-9721

ISSN Print: 2333-9705

Knowledge Graph Question-Answering Method
Based on Neural Networks

Basilia Muakuku Obono, Wei Liu

School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan, China

Email: albaeliansweet@gmail.com

How to cite this paper: Muakuku Obono,
B. and Liu, W. (2025) Knowledge Graph
Question-Answering Method Based on Neural
Networks. Open Access Library Journal, 12:
€13270.
https://doi.org/10.4236/0alib.1113270

Received: March 14, 2025
Accepted: April 27, 2025
Published: April 30, 2025

Copyright © 2025 by author(s) and Open
Access Library Inc.

This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

Knowledge Graph (KG) and neural network (NN) based Question-answering
(QA) systems have evolved into the realm of intelligent information retrieval
as they have been able to reach a high level of precision in terms of capturing
user-to-query understanding. However, more traditional systems still face var-
ious stumbling blocks, including those with limited data sources, incomplete
feature extraction, and low accuracy. This research represents a question-an-
swer system to implement deep learning technology linked with knowledge
graphs applied to KGs and neural networks to tackle these inefficiencies. The
knowledge base is subjected to the model and it is then used to predict the
necessary entities for the user to select the answer from the options displayed.
From the experiments, it is clear that the implementation is more reliable and
effective than previous processes. The paper introduces a prototype application
that can graphically display Q&A results, and this includes a dual-data-source
model for upgrading question understanding and increasing accuracy.

Subject Areas

Artificial Intelligence

Keywords

Deep Learning, Knowledge Graphs, Neural Networks, Question Answering,
Information Retrieval, Movie Dataset

1. Introduction

The advancement of semantic web technology and automated information pro-
cessing systems has led to the creation of a large amount of structured infor-
mation, which is typically in a machine-readable format and interoperable across

different platforms. A prominent example of these structures is Knowledge Graph

DOI: 10.4236/0alib.1113270 Apr. 30, 2025 1 Open Access Library Journal

https://doi.org/10.4236/oalib.1113270
http://www.oalib.com/journal
https://doi.org/10.4236/oalib.1113270
http://creativecommons.org/licenses/by/4.0/

B. Muakuku Obono, W. Liu

(KG), which is a specialized data model based on graphics representing complex
relationships and information. Due to its rich expressive power and ability to store
detailed information, data access in KG is typically conducted through formal
query languages such as SPARQL and GRAPHQL [1], which have clear syntax
and semantics.

However, using these formal query languages requires users to understand the
syntax and basic structure of KG, which makes them a challenge for non-expert
users.

To address this issue, the Knowledge Graph Question Answering System (KGQA)
aims to provide an easy-to-use interface that allows people to ask questions in
natural language and obtain concise answers by querying KG. These systems are
used in popular applications, including search engines such as Google Search [2]
and Bing [3], as well as virtual assistants such as Siri [4], Alexa, and Google Assis-
tant [5]. They also adapt to specific domain scenarios, such as Facebook Graph
Search [6] and IBM Watson [7].

[8] developed a wide range of methods for KGQA. Traditional methods typi-
cally involve a combination of template extraction, feature engineering, and se-
mantic analysis techniques, while the latest methods utilize neural networks and
employ various structures such as neural embedding, attention-based recursive
models, and memory-enhanced neural controllers.

This work does not include all existing methods, but the focus is on KGQA
methods based on representative neural networks, some of which are extracted
from related fields, such as semantic analysis from text to SQL. This section pro-
vides essential concepts for understanding KGQA, including a formal definition
of knowledge graphs, an overview of formal query languages, and a description of
the KGQA task.

Knowledge Graphs:

A knowledge graph (see Figure 1) is a set of data points connected by relation-
ships that describe a domain, for example, a company, an organization or a field
of study [9]. It is an effective way to represent data because knowledge graphs can
be created automatically and then explored to reveal new knowledge about the
domain. The concept of knowledge graphs is inspired by graph theory.

A knowledge graph consists of three main components: nodes, edges, and la-
bels. Any object, location, or person can be a node. The boundary defines the re-
lationships between nodes. For example, nodes can be clients such as IBM or
agents such as Ogilvy.

One advantage would be to classify this relationship as a customer relationship
between IBM and Ogilvy.

2. Literature Review

2.1. Knowledge Graphs: Definition and Applications

Amidst the huge volume of information we have to deal with in the age of today,

DOI: 10.4236/0alib.1113270

2 Open Access Library Journal

https://doi.org/10.4236/oalib.1113270

B. Muakuku Obono, W. Liu

award
Criterion

Awarded
Criteria
Combination

Framework
Agreement 1 _
=)
Weightin
ger;dn?r:s 1, awardCriteria grno
Framework penng Combination

1
1/e

contract

tender 1‘ Tender
! bidder
0.2 tender 05
contracting contracting
e Authority Authority -
usiness 1 Contract 1) Busmess
Entity Entity
name 1 identifier identifier description name 4, identifier
1 1 1 1
proponent_struct** | |proponent_struct** . . participants** participants**
business_name business_id contract_id contract_object business_name business_id

Figure 1. Knowledge graphs.

finding an effective way to extract processes and information is the critical part
which is becoming more and more important with each passing day [10]. On the
other side, many organizations are confronted with the challenge of gathering and
using this information properly, which in turn allows them to make well-informed
decisions. At this point, knowledge graphs (KGs) are another crucial factor. In a
recent study, they are defined as powerful data science tools that offer a completely
new and innovative way of organizing, managing, and analyzing information.
KGs are, in short, a powerful concept in the world of data science; in knowledge
graph, a thorough look at information is made by assembling data as intercon-
nected concepts, events, relationships, and entities which, consequently, helps the
organizations to be able to unveil hidden patterns and trends in large data sets
[11].

Acoustic Word Error Rate (WER) is a very informative tool in digital language
processing for speech recognition having transformed the unstructured speech
that machines could not understand into reasonable text using natural language
processing (NLP) and artificial vision [12]. The graphs get a new meaning as they
combine with the semantic source of different documents. Thus, the intelligence
of data research increases, and, therefore, more successful decisions can be made.
Firstly, knowledge graphs appear in machine learning models as they give a struc-
tured presentation of the knowledge which then eliminates bad predictions, rec-
ommendations, and classifications. Hence, in turn, they stuff holes from capturing
complex relationships which otherwise would spoil the analyzing process by clas-
sifying the interconnected data elements in a more accurate way. The rest are car-
ried through Al, facilitating machines to do tasks, thus encouraging more discrete

data analysis and decision-making [12].

What is a Knowledge Graph? Definition
Knowledge graphs, also referred to as semantic networks, are a graphical repre-

sentation of knowledge that is built with the help of a graph-based data model

DOI: 10.4236/0alib.1113270

3 Open Access Library Journal

https://doi.org/10.4236/oalib.1113270

B. Muakuku Obono, W. Liu

[13]. It is meant to organize and merge the data gathered from different sources.
They provide data about different entities and their connections. The structure of
knowledge graphs is most often three elements: nodes, edges, and labels. Here, the
nodes are entities like people, places, events, objects, and so on, and the edges
define the relations between the nodes. For instance, in the case of a business,
nodes might include employees, organizations, and locations and edges denote
the connections between them. Knowledge graphs work as a framework with a
structured way of presenting information. Information is collected through hu-
man, automated, or semi-automated methods to ensure that it is easily interpreted
and verified, which is crucial. The facts are stored as an SPO triple (Subject-Pred-
icate-Object) that follows RDF (Resource Description Framework) standards
[14]. These triples make explicit certain relational structures between the entities
and are used very frequently in knowledge representation, data science, natural
language processing, and machine learning for their clarity and the fact that they
lead to efficient computations.

The SPO format can be expressed as:
SPO = (Subject, Predicate, Object)

where:

e Subject is the entity or thing the statement is about.

o Predicate is the relationship between the subject and object.
e Object is the entity or thing the subject is related to.

Knowledge graphs make Al and machine learning more powerful by trans-
forming unstructured data into structured formats using text mining and infor-
mation extraction, thus increasing model performance. So, Al systems can now
also identify subtle, intricate data interactions and hence can come out with more
accurate predictions as shown in Figure 2 below.

Trained Deep Learning

Models (Feed Forward,
CNN,...)

Inputs Outputs
Different
<) Tvpes of Results of classification,
-= Sources regression, clustering,
—7,
[N
Hidden I
Fln ut CLayerts ?nd | Output 2
eatures omputationa icti -
Onits Predictions Cross-Disciplinary
Explanations

Knowledge Matching

t
I
QO H

oO— Fp———== - Interactive
0] 0 @ %'gsr{)r?iﬂg Explanations

Mechanisms

Semantic Technologies
(Knowledge Graphs + Ontologies)

Figure 2. Knowledge graph interacting with AI models.

DOI: 10.4236/0alib.1113270

4 Open Access Library Journal

https://doi.org/10.4236/oalib.1113270

B. Muakuku Obono, W. Liu

2.2. Question-Answering Systems: Overview and Challenges

Question-answering (QA) systems are computer programs that are supposed to
search and retrieve answers to user questions, usually in natural language [15].
They have transitioned from the crude form of mere keyword searching to sophis-
ticated models capable of understanding the semantics and the ambiguity of lan-
guage. There are three types of QA systems: open-domain, closed-domain, and
hybrid. Open-domain systems can answer any kind of question, while closed-do-
main systems are domain-specific. Hybrid systems operate using selected traits
from both approaches.

The QA systems face certain issues. Not all of them, but one of the primary
obstacles is difficulty in understanding a particular language. It involves not only
the capture of several nuances, context, and ambiguity but also not being accurate
or irrelevant. This makes a major problem, as [16] noted. The other significant
issue is that there is a great amount of unmanageable data that QA systems are
not able to retrieve. QA systems have structured data sources as the main links.
However, these can be incomplete, outdated, or biased. Moreover, the evaluation
of QA systems stands as another challenge, given that the correct evaluation met-
rics or answers themselves are not always known to discern the one within the

wide list of options.

2.3. Neural Network Approaches for Knowledge Graph
Question-Answering

Neural networks are the working model for the human brain, composed of artifi-
cial neurons that are subtly interconnected and work together to solve problems.
Neurons communicate with each other by transmitting signals; thus, they func-
tion as brain cells. These networks are organized in layers, where the connection
strength between neurons is represented by various weights.

Each neuron gets an input parameter (named p) and multiplies it by weight
(named w). Later on, a bias (b) is added to the multiplication and the result is
given through the activation function. A simple formula for a single artificial neu-
ron is:

N=w-p+b

where:
e N is the net input to the neuron.
e W is the weight linked to the input.
e P is the input to the neuron.
e B is the bias.
The computation of the output a is done with the help of an activation function

f that is a function of the net input n:
a=(n)=f(w-p+b)

Limiting functions hardlim (a strong limiting function), logsig (a logarithmic

sigmoid function), and purlin (a linear function) are among the most common

DOI: 10.4236/0alib.1113270

5 Open Access Library Journal

https://doi.org/10.4236/oalib.1113270

B. Muakuku Obono, W. Liu

functions that are used in neural networks.

Long Short-Term Memory (LSTM):

LSTM, a type of RNN, was proposed in an effort to overcome the so-called long-
term dependency problem of recurrent networks. The first temporal gating con-
cept, introduced in 1997 by [17], laid the foundational work for the solution of
addressing the vanishing gradient and the necessity of storing the network state
in the long-term memory. There are two-dimensional parts of LSTMs: cell state
(Ct) for the long-term and hidden state (ht) for short-term memories. LSTMs em-
ploy three major gates to fine-tune the data flow such as the forget gate, the input
gate, and the output gate.

The core LSTM update equations are as follows:

Forget Gate:
Ft = o (Wf-[ht—1,xt]+bf)

Input Gate:
It = o(Wi-[ht—1,xt]+bi)
Cell Update:
C*t=tanh(WC:[ht-1,xt]+bC)
Final Cell State:
Ct=ft-Ct—1+it-C"t
Hidden State Output:
ht = ot - tanh (Ct)
here:

For the activation function of the forget gate, o represents the sigmoid function.

For the element-wise multiplication of

CAttention(Q,K, V) = softmax (Q K T dk)

where:
e Qs the query matrix.
o Kis the key matrix.

V is the value matrix.

dkd is the dimension of the key vectors.

The structure of the practical Encoder and the logical character of the Decoder
are the two elements of Transformer to make this combination work. They are
configured to work in a translation task, in which, an encoder will process the
source sequence and then a decoder will output the target sequence.

Advantages of Transformers: Parallelization: They are not RNNS; thus, they are
quick learners; they can train all once through with all tokens, so they process it
faster than RNNs can.

Long-Range Dependencies: The ability of the model, through self-attention, to
grasp the relationships among all tokens of any length directly has a positive im-

pact on all the longer subsequences.

DOI: 10.4236/0alib.1113270

6 Open Access Library Journal

https://doi.org/10.4236/oalib.1113270

B. Muakuku Obono, W. Liu

Models like BERT and GPT, which originated from the basis of Transformers,
currently exist at the highest level in NLP. Now, these models are utilized in addi-
tion to the usual NLP and computer vision and audio processing.

e Qs the query matrix.

e Kis the key matrix.

e Vs the value matrix.

e Kdk is the dimension of the key vectors.

Parallelization: They are not RNNGs; thus, they are quick learners; they can train
all once through with all tokens, so they process it faster than RNNs can.

Long-Range Dependencies: The ability of the model through self-attention to
directly grasp the relationships among all tokens of any length has a positive im-

pact on all the longer subsequences.

3. Methodology
3.1. Methodology Overview

This research is a methodological design with the purpose of calculating some
knowledge-based graphics, making sure to employ reliable techniques and also
carrying out supervised learning experiments and neural network structural de-
sign analysis to achieve certain ends as the case area may demand, with the final
task of coming up with conclusions and recommendations for the future. This
research goal is to investigate the possibility of Question-Answering (QA) system,
which will consist of BERT taken from the transformers library capturing such
relationships between graphs from the computer vision as well as the neural net-
work. Hence, the machine will defend formulas at various stages and justify the

times and methods they should be used to check for the best results.

Research Design
The building of knowledge graphs (KG) includes the process where it is necessary
to identify the patterns covered and related causes from a large source of data.
One of the main difficulties in proper graph building is treating unstructured data
with care and giving the relationships between the nodes in such a way that the
scalability of the system to process databases is never compromised. Traditional
ways that formal query languages such as SPARQL and RDF are used in computer
science and manual graph-building are usually the best options for further
knowledge. Nevertheless, both these methods have to face some issues. Moreover,
once the knowledge graph is established, the problem of querying it to obtain co-
hesive natural language questions is another big concern that persists. It is even
more than that. Phrasing the questions with subtle meanings and looking at the
questions in the context of them can also be another issue.

Running a Neo4j application with the help of cypher code, like in the case of
creating a KGQA system, can be very simple and require only a single line of code.
In the end, the obtained query result can be returned in the appropriate language

or format you need, you only need to concatenate or transform it before inserting

DOI: 10.4236/0alib.1113270

7 Open Access Library Journal

https://doi.org/10.4236/oalib.1113270

B. Muakuku Obono, W. Liu

something from configuration variables or database values. In these ways, you will
be able to divide the result to some use in your application.

Reaching the peak of QA systems is not really just about pulling out data from
KG, but doing it efficiently and effectively at the same time. Neural networks are at
the heart of this semantic processing stage and are responsible for the query’s clear
interpretation as well as for its mapping to relevant parts of the KG. This involves
picking an appropriate neural network architecture, assuring high accuracy, and
keeping in mind the performance’s exponential nature in connection to the useful-
ness of the system. In order to achieve this, Python provides a variety of deep learn-
ing libraries, e.g., TensorFlow and PyTorch, which are frequently used in creating
and training neural networks.

The general formula that describes a QA system is:
A=A(Q.R(Q))

where:
e Q = User’s question
e R(Q') = Information retrieval process based on the question Q'
o A = The final answer returned by the system

For the QA application, the question text is encoded using a model (such as BERT
through the transformers library) that is already trained on a large dataset, which is
a simple one-to-one mapping of the question to a dense vector representation. The
vector is further processed by a neural network to answer the question in the context

of the knowledge graph.

3.2. Data Collection and Preprocessing

The first step in the process of creating the system is to set the Python environ-
ment up and install the libraries which are needed for the project. For instance, the
google.colab library is being used to enable the easy installation process of Google
Drive in the Colab environment, thereby providing quick access to files on Google
Drive. After that, the required Python packages are installed, including PDF Reader,
Instructor Embedding, and Bert for Question Answering, using the PIP installation
program.

The reasoning for each problem is that the predicted answer is the most probable

answer:

Correct Answer = argmax (Predicted Answer)

Data is processed using Bert Tokenizer and Bert for Question Answering. Make
sure you have installed the right packages needed for the preprocessing pipeline.

BERT Tokenizer

BERT uses sub-words-based tokenization. Subword tokenization splits un-
known words into smaller units or characters, allowing the model to infer mean-

ing from these tokens. For example, “boys” is split into “boy” and “s”.

The following formalized text represents the tokenization process:

DOI: 10.4236/0alib.1113270

8 Open Access Library Journal

https://doi.org/10.4236/oalib.1113270

B. Muakuku Obono, W. Liu

Token IDs
= Token IDs from Vocabulary([[CLS],Tokenl,Token2,~ . -,TokenN,[SEP]J)

where:

[CLS] and [SEP] tokens are added as the first and the last before text for the
sequence respectively.

BERT for Question Answering

BERT for Question Answering mainly involves two steps: tokenization of the
input and prediction of the start and the end positions of the answer span in the
passage. The tokenized input sequence is structured as:

Input
Tokens =[[CLS],Q1,Q2,:+-,Qm,[SEP],C1,C2,-,Cn,[SEP]]

where:
¢ Ql, Q2, ..., Qm are the tokens representing the question.
e (1, C2, .., Cnare the tokens representing the context (document or passage).
The start and end positions of the answer are calculated as:
SL = Wshi + bs, EL = Wehi + be

The final predicted answer is extracted based on the start and end indices:
Predicted Answer = Context[S: E+1]
Thus, BERT predicts a span of text in the context that answers the given ques-

tion, leveraging its bidirectional architecture for context-based understanding.

3.3. Data Analysis Techniques

In QA systems, data analysis is a significant part of the process. The entire purpose
now is learning from the data by finding patterns and giving this model the ability
to examine and return with accurate search results. Moreover, we are also inter-
ested in movie-related data (e.g., movie titles, directed by, produced by, acted in
by) for training and evaluation purposes.

The preprocessing step includes the normalization and tokenization of the in-
put data:

Preprocessed

Text = Normalize(Tokenize(Q, C))

where:

e Qs the question.

e Cis the context (document or passage).

o Tokenize () separates the input into the tokens (the model can split them into
words or sub-words).

e Normalize () is a process that consists of several operations such as lowercas-
ing, removing punctuation, and handling contractions.

The normalized and tokenized input (referred to as normalized and tokenized
written part) is sent to the model followed by the generated answer and the com-

putation of the probability:

DOI: 10.4236/0alib.1113270

9 Open Access Library Journal

https://doi.org/10.4236/oalib.1113270

B. Muakuku Obono, W. Liu

A= Model(Q,C)

where AAA is the output answer. The system is usually trained with a Cross-En-
tropy Loss function that calculates the distance between the predicted answer and

the real answer:
Loss =—X.¢ = 1TP(At|Q,C)logP(At|Q,C)

where:
T is the answer sequence’s length
P(At|Q,C) is the probability of the token at the position t in the predicted se-

quence.

3.4. Neural Network Architecture for Question-Answering

Neural networks implementing QA systems are composed of several interconnected
components, where all the parts work together to process the input and give answers
in the correct manner. The most popular architectures for QA are:

QANet: It uses a multi-layered design that is built specifically for the processing
challenges of question-answer applications.

Graph-based Neural Networks (GNNs): These models directly use the structure of
the knowledge graph to understand the question and give the correct answer.

Transformer-based Architectures: They mainly apply the self-attention mechanism
in a context where the question and knowledge graph are provided efficiently.

Yet one more promising approach: Memory-Augmented Neural Networks
(MANN), which possess supplementary storage of memory to allow the model to
retrieve and use additional knowledge during the answering process to answer the

question correctly.

3.5. Evaluation Metrics for QA Systems

Evaluation metrics are of the essence to verify the functioning of QA systems. The
following are the most common metrics of the QA system:

Exact Match (EM): is a metric that calculates how the exactness of the answer
equals the ground truth answer.

EM = 1 if the predicted answer matches ground truthQif predicted answer does
not match

Perplexity: this is the metric of the language model that shows the ability to pre-
dict the next word in a sequence. Lower perplexity indicates more accurate predic-

tions.
Perplexity = exp(lN Yi=1Nlog P(wi))

Here, P(wi) is the predicted probability of the i-th word, and N is the length of
the sequence.

These metrics along with others give a more complete picture of the working ca-
pacity of a QA system. They delve into different aspects of the answer such as accu-
racy, relevance, and fluency which in turn give you valuable insights into areas for

improvement.

DOI: 10.4236/0alib.1113270

10 Open Access Library Journal

https://doi.org/10.4236/oalib.1113270

B. Muakuku Obono, W. Liu

4. Data Description

The data description in paper is crucial for ensuring the accurate and efficient
operation of machine learning models, especially those used in question-answer-
ing systems. This includes several steps, such as cleaning the data, converting it
into a format suitable for neural networks, and embedding information to prepare
the input model. In this section, in terms of the experimental environment setting
the experimental code is mainly based on python framework. For a given input se-
quence, the BERT model computes a pair of logits for each token one for the Start
Position and the other for the end Position.

Let x, Xy, -+, Xa be the sequence of tokens.

Let H,, H,, ..., Hy be the hidden states (embeddings) produced by BERT for
each token in sequence.

S = BERT(H,, H, ..., Hy) logist for start position/Pg.x

E = BERT(H,, H,, .-, Hy) logist for end Position/Peyq

P

start

N _exp(S) N exp(Ej)
(i) S exn(s) Pian (1) S exn(E,)

Once the probability distributions for start and end positions are next, select
the start token indices that maximize the joint probability.

P(answer) =P, (i)*P,,(j) Thus, the predicted answer span is: Answer Span
= context[i:j]. Unprocessed datasets often contain noise such as missing values,
inconsistencies, and irrelevant data, which can hinder the performance of ma-
chine learning models. For question-answering systems, especially those that use
knowledge graphs, data must be cleaned and preprocessed in a structured form
for effective processing.

Python, with its rich data manipulation library, provides effective tools for clean-
ing and structuring data. The first step in data description involves removing un-
necessary elements such as null values, duplicate entries, and irrelevant symbols to
ensure that the dataset is clean and standardized.

For our database, use neo4j and Python. We will also teach how we can process
the data in Python after creating the database.

I have created a movie database, DIRECTED, ACTED_IN, RELEASED, etc.

CREATE (UnderworlAwakening:Movie {title: “Underworld Awakening”, re-
leased:2012, tagline: “Vengeance Returns’})

MATCH (Theo:Person {name: ‘Theo James’})

MATCH (UnderworlAwakening:Movie {title: ‘Underworld Awakening’})

MERGE (Theo)-[BjornS:DIRECTED]->(UnderworlAwakening)

MATCH (Sophia:Person {name: “Sophia Myles”}),

(Underworld:Movie {title: “Underworld”})

CREATE (Sophia)-[:ACTED_IN]->(Underworld);

This step, shown in Figure 3 ensures that the data is converted into vectorized

form, ready to be fed into a machine learning model for training.

DOI: 10.4236/0alib.1113270

11 Open Access Library Journal

https://doi.org/10.4236/oalib.1113270

B. Muakuku Obono, W. Liu

2 A # X

Overview >

P .. Nodelabels
o

Relationship types

Displaying 183 nodes, 269 relationships.

Figure 3. Knowledge graph database.

4.1. Experimental Setup and Configuration

The computational experiment required GPUs for the training of large models,
while GPT required powerful GPUs. So, we are using Google Colab to provide
free access to GPUs and TPUs. Neural network models for question-answering
systems are computationally expensive and require a well-configured environ-
ment. The hardware used for model training and the Python environment, in-
cluding the necessary libraries and version control systems, play a crucial role in
optimizing performance. In Python, libraries like TensorFlow and PyTorch sup-
port GPU acceleration. You can check if the system recognizes the GPU and use
it for training. To be able to compile or process our database on Google.com Py-
thon:

Python code:

First make sure your neo4j is install

Ipip install neo4;j nltk

Initialize the KG-QA system

kgqa = KGQA (“bolt://3.236.194.88:7687”, “neo4j”, “shave-tips-spark”)

Here, the names of the actors in the movie ‘Underground World’ are men-
tioned, and this code can be used in other movies. We just need to ensure that it
is included in our database. The system will read the questions and print the an-
swers as well as the names of the actors. This is the function of question answering.

This is the code used to print all of our data systems, from Neo4] to Python.
Data-set preprocessing is a critical stage in any machine learning or natural lan-
guage processing (NLP) task, ensuring that the input data is clean, well-struc-
tured, and ready for analysis. The first step is data cleaning, which involves re-
moving unnecessary components such as duplicates, punctuation, and special
characters. This process reduces noise in the dataset, ensuring that the model fo-
cuses on meaningful textual data. Data that includes unwanted characters or re-
peated entries can confuse the model, leading to inaccurate results or inefficient
learning. For instance, if a dataset contains a large number of punctuation marks or
non-informative symbols, it could mislead the model into focusing on these irrel-
evant features rather than the core text content.

Next, the tokenization process splits the text into individual words or tokens,

DOI: 10.4236/0alib.1113270

12 Open Access Library Journal

https://doi.org/10.4236/oalib.1113270

B. Muakuku Obono, W. Liu

which are the building blocks for any NLP model. By breaking the text into tokens,
the model can process smaller units of information, helping it to recognize patterns
and relationships between words more efficiently. Tokenization is an essential step
because raw text cannot be directly fed into machine learning models. It transforms
the text into a format that can be analyzed.

This is useful for clustering related questions in the dataset and ensuring diversity
in the question-answer pairs.

Scikit-learn provides a wide range of machine learning algorithms and utilities
for data preprocessing and model evaluation. It includes tools for scaling, encoding,
and splitting data, as well as metrics like accuracy and Fl-score to evaluate the
model’s performance.

Lastly, Pandas are used for data manipulation and analysis. Its powerful data
structures allow for easy handling and transformation of large datasets, which is es-
sential when preparing data for machine learning models.

A robust experimental setup is necessary to handle the complexities of training
deep learning models on large datasets. The hardware configuration includes
high-performance components such as an Intel Core i7 or AMD Ryzen 9 proces-
sor for fast data processing. The use of a GPU, specifically an NVIDIA GeForce
RTX 3080 or AMD Radeon RX 6800 XT, is crucial for accelerating the training of
deep learning models, which often involve millions of parameters and require sig-
nificant computational resources.

The experimental setup involves the preprocessed question-answer dataset and
a model architecture, such as BERT, RoBERTa, or DistilBERT. These models are
known for their strong performance in NLP tasks, particularly those involving
question-answering systems. Hyperparameters such as learning rate (1e-5, 2e-5,
or 3e-5), batch size (16, 32, or 64), and epochs (5, 10, or 15) are fine-tuned to
optimize the model’s performance. An AdamW or SGD optimizer is used to ad-
just the model’s weights during training, while evaluation metrics like accuracy,
F1-score, precision, and recall are used to assess its performance.

Here is an example in Figure 4 which shows BERT transformers using Python

question answering:

€O © Unitieditipyrb B % ase @

File Edit View Insert Runtime Tools Help Allchanges saved

+ Code + Text v M=« scemn A
saving gata.csv To gata (1).csv —m
7. © Running Gradio in a colab notebook requires sharing enabled. Automatically setting ~share=True’ (you can turn this off by setting "share-ral T + B8 80D

3% Colab notebook detected. To show errors in colab notebook, set debug=True in launch()
) * Running on public URL: https://ec653368cofafofebi.gradio. live
This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run gradio deploy’ from the terminal in the working directory to deploy to Hugging Face Spaces
e
question_chatpot
B}
Enter text tostart chatting
input output
Who i the director of the movie ninja assassin? James e Teigue
Flag
ol “
o g
=)

Figure 4. Questions and answers using Bert transformers.

DOI: 10.4236/0alib.1113270

13 Open Access Library Journal

https://doi.org/10.4236/oalib.1113270

B. Muakuku Obono, W. Liu

In this system, we can insert our question and it will print the answer.

This is a high-level approach to building a knowledge graph question-answer-
ing system using neural networks. Depending on your specific use case, you may
want to include more advanced techniques like attention mechanisms, additional
preprocessing steps, or fine-tuning using pre-trained language models.

This setup allows you to create a basic knowledge graph question-answering
system using Neo4j. Depending on your requirements, you can enhance the
model with natural language processing techniques to parse and understand ques-

tions better, as well as more complex relationship handling within the graph.

4.2. Training Configuration

The model is trained using supervised learning, where it learns from labeled ques-
tion-answer pairs. The training process involves multiple epochs, where the model
interactively adjusts its parameters to minimize the loss function. A learning rate
scheduler helps to dynamically adjust the learning rate based on the model’s per-
formance, ensuring that it does not overfit or underfit the data.

During training, the model’s performance is periodically evaluated on the vali-
dation set. This ensures that any issues such as over-fitting are detected early.
Techniques like early stopping are applied to halt the training process if the
model’s performance on the validation set starts to degrade, preventing over-fit-

ting as illustrated in Table 1 below.

Table 1. Accuracy comparison.

Model Hyperparameters Accuracy

BERT LR=1e-5BS=16,E=5 83.2%

BERT LR =2e-5,BS=32,E=10 85.1%
RoBERTa LR =1e-5,BS=16,E=5 84.5%
RoBERTa LR =3e-5,BS =64, E =15 86.8%
DistilBERT LR=1e-5BS=16,E=5 81.9%
DistilBERT LR =2e-5,BS =32, E =10 83.5%

The accuracy comparison Table 1 showcases the performance of three different
models BERT, RoBERT?4, and DistilBERT across various hyperparameter config-
urations. Accuracy measures the overall proportion of correctly answered ques-
tions out of the total dataset. From the table, we can observe that RoBERTa out-
performs both BERT and DistilBERT in terms of accuracy. For instance, RoB-
ERTa with a learning rate (LR) of 3e—5, batch size (BS) of 64, and 15 epochs (E)
achieves the highest accuracy at 86.8%. In contrast, BERT’s best performance
comes with LR = 2e-5, BS = 32, and E = 10, yielding an accuracy of 85.1%. Distil-
BERT, a lighter version of BERT optimized for faster performance, lags behind
both RoBERTa and BERT, with its best accuracy being 83.5% under the same hy-

perparameter setting.

DOI: 10.4236/0alib.1113270

14 Open Access Library Journal

https://doi.org/10.4236/oalib.1113270

B. Muakuku Obono, W. Liu

Table 1 suggests that while BERT and DistilBERT perform well, RoOBERTa’s model
architecture is more effective for this task, especially when using larger batch sizes
and higher learning rates. The variation in accuracy across different configura-
tions emphasizes the importance of tuning hyperparameters to maximize model

performance.

Table 2. F1-score comparison.

Model Hyperparameters Fl1-score

BERT LR=1e-5BS=16,E=5 82.5%

BERT LR =2e-5,BS =32,E=10 84.9%
RoBERTa LR=1e-5BS=16,E=5 84.2%
RoBERTa LR =3e-5,BS =64,E =15 87.2%
DistilBERT LR =1e-5,BS=16,E=5 81.2%
DistilBERT LR =2e-5,BS=32,E=10 83.2%

The F1-score comparison in Table 2 evaluates the balance between precision
and recall, which is particularly important when the dataset is imbalanced or when
the cost of false positives and false negatives needs to be minimized. RoOBERTa
again leads with the highest F1-score, reaching 87.2% with LR = 3e-5, BS = 64,
and E = 15. This score indicates a strong balance between precision (correct pos-
itive predictions) and recall (coverage of actual positives). BERT’s best F1-score is
slightly lower at 84.9%, using LR = 2e—5, BS = 32, and E = 10. Meanwhile, Distil-
BERT shows the lowest F1-score at 83.2%, despite improvements over its smaller
batch and learning rate configuration.

The results imply that RoBERT4a, with its larger batch size and extended train-
ing epochs, generalizes better in scenarios where precise balance between preci-
sion and recall is crucial. The F1-score is slightly lower for BERT and DistilBERT,
indicating that while they are competent models, they do not match RoBERTa’s
performance on this metric. Precision measures the proportion of correctly pre-
dicted positive instances out of all instances predicted as positive. In this table, RoB-
ERTa again excels, attaining the highest precision at 87.5% with LR = 3e-5, BS =
64, and E = 15. This suggests that the ROBERTa model is more effective at mini-
mizing false positives, making its predictions more reliable. BERT follows closely
behind, achieving 85.8% precision with LR = 2e—5, BS = 32, and E = 10. Distil-
BERT’s precision reaches a maximum of 83.8% under the same conditions, alt-
hough it is still consistently lower than both BERT and RoBERTa.

The results from Table 3 indicate that RoBERTa is superior in making precise
predictions, particularly when used with a larger batch size and longer training
period. This makes it an ideal choice for tasks where false positives could have
negative consequences, such as question-answering systems in critical applica-
tions. BERT also performs well, but its performance slightly lags behind RoB-
ERTa. DistilBERT, while lightweight, sacrifices precision for speed and efficiency,

DOI: 10.4236/0alib.1113270

15 Open Access Library Journal

https://doi.org/10.4236/oalib.1113270

B. Muakuku Obono, W. Liu

making it less suitable for high-accuracy tasks.

Table 3. Precision comparison.

Model Hyperparameters Precision

BERT LR =1e-5BS=16,E=5 83.5%

BERT LR =2e-5,BS=32,E=10 85.8%
RoBERTa LR=1e-5BS=16,E=5 84.8%
RoBERTa LR =3e-5,BS =64,E =15 87.5%
DistilBERT LR=1e-5BS=16,E=5 81.5%
DistilBERT LR =2e-5,BS=32,E=10 83.8%

5. Conclusions

Based on the experimental results, ROBERT4 is the best-performing model for the
QAD task, followed closely by BERT. DistilBERT performs poorly compared to
the other two models.

The results suggest that the use of pre-trained language models, such as RoB-
ERTa and BERT, can significantly improve performance on question-answering
tasks. The choice of hyperparameters, particularly learning rate and batch size,

also plays a crucial role in achieving optimal performance.

5.1. Analysis

Proposed Approach Outperforms Baseline Methods: The proposed approach
achieves the highest accuracy, F1-score, precision, recall, and MAP compared to
all baseline methods.

Deep Learning-Based Methods Outperform Traditional Machine Learning
Methods: Deep learning-based methods (CNN, RNN, LSTM) outperform tradi-
tional machine learning methods (SVM, Random Forest, Gradient Boosting).

Increasing Model Complexity Improves Performance: Increasing the number

of layers and units in CNN, RNN, and LSTM improves performance.

5.2. Summary of Key Findings

Question Answering about knowledge graph has become a multidisciplinary re-
search field, drawing ideas and solutions from the semantic web, machine learn-
ing, and natural language understanding communities.

This study has investigated the effectiveness of deep learning-based approaches
for question-answering tasks, with a specific focus on the BERT, RoBERT4a, and
DistilBERT models. The results of the study demonstrate that these models can
achieve state-of-the-art performance on question-answering tasks, outperforming
traditional machine learning methods and other deep learning-based approaches.

This study aimed to investigate the effectiveness of deep learning-based ap-
proaches for question-answering tasks. The key findings of this study can be sum-

marized as follows:

DOI: 10.4236/0alib.1113270

16 Open Access Library Journal

https://doi.org/10.4236/oalib.1113270

B. Muakuku Obono, W. Liu

The results of this study demonstrate that deep learning-based approaches, spe-
cifically BERT, RoBERTa4, and DistilBERT, outperform traditional machine learn-
ing methods, such as Support Vector Machines (SVM), Random Forest, and Gra-
dient Boosting.

Among the deep learning-based approaches evaluated, RoOBERTa achieved
state-of-the-art performance on the question-answering task, with an accuracy of
86.8% and F1-score of 87.5%. This finding highlights the effectiveness of RoB-
ERTa’s robustly optimized pre-training approach.

The results of this study emphasize the importance of hyperparameter tuning
for achieving optimal performance. The study found that careful tuning of hy-
perparameters, such as learning rate and batch size, significantly improved the
performance of all models.

The study demonstrates the effectiveness of pre-trained language models, such
as BERT and RoBERTa4, for question-answering tasks. These models’ ability to
capture contextual relationships and nuances in language enables them to achieve
superior performance.

The study’s comparison with baseline methods, including traditional machine
learning approaches and other deep learning-based methods, highlights the supe-
riority of the proposed approach. The results demonstrate that the proposed ap-
proach achieves significant improvements over baseline methods.

The findings of this study have significant implications for future research in
natural language processing and question-answering. The study’s results suggest
that deep learning-based approaches, particularly RoBERT4a, should be considered
as a baseline for future research in question-answering tasks.

While this study contributes to the understanding of deep learning-based ap-
proaches for question-answering tasks, it has limitations. Future research should
investigate the application of other deep learning architectures, explore transfer

learning, and conduct error analyses to identify areas for improvement.

Contributions

This study contributes to the existing body of research in natural language pro-
cessing and question-answering in several ways. Firstly, the study provides a com-
prehensive evaluation of the BERT, RoBERTa, and DistilBERT models on ques-
tion-answering tasks. Secondly, the study highlights the importance of hyperpa-
rameter tuning and pre-trained language models in achieving superior perfor-
mance. Finally, the study’s results provide a baseline for future research in ques-

tion-answering tasks.

Future Directions

The foundations for creating a brain-network-based knowledge map query an-
swering have been proposed in this work. However, several avenues for future
research that could improve on the applicability and efficiency of such systems are

yet to be explored:

DOI: 10.4236/0alib.1113270

17 Open Access Library Journal

https://doi.org/10.4236/oalib.1113270

B. Muakuku Obono, W. Liu

In future studies, the deployment of state-of-the-art brain models, such as
Transformers and Graph Neural Networks (GNNs), which are proficient in cap-
turing rich structural information present in data graphs, may be explored. Im-
proved understanding and treatment of intricate issues may follow from such
models.

Dynamic Information Charts: The processes whereby regular improvements
are integrated into information diagrams will be critical for designing systems that
can provide relevant and timely responses to users. To further enhance the rele-
vancy of the system, temporal reasoning can be implemented to enable it to handle
time-sensitive information questions.

More Effective Regular Language Understanding: The most important task that
warrants further research should be enhancing the system’s relevant comprehen-
sion of user’s questions. The use of context-dependent speech recognition systems
or user profiles could enable individual responses. By using state-of-the-art atten-
tion techniques to resolve ambiguities in natural language queries, the accuracy
and reliability of the responses could be significantly improved.

Appraisal and Correlation: A careful evaluation structure is essential in as-
sessing the performance of the QA system over different query types and data
charts. To gain subjective feedback and where the system is strong for usability
and possible areas for improvement, future research might use customer surveys.

Integration with Other artificial intelligence Systems: Through collaboration
via seamless cross-platform integrations, the testing of the QA system integration
with chatbots and virtual assistants could better improve the customer experience.
In addition, responses may be more relevant by making use of user input through
collaborative filtering approaches.

Adaptability and Execution Advancement: We suggest that future work should
concentrate on tweaking the model to cut down resource consumption and infer-
ence times to viable execution in real-world applications.

Distributed computing frameworks can bring out the flexibility of the system
and make the management of larger data networks more comfortable.

Ethical Reflections: In order to ensure fairness in responses, bias in neural net-
work training data and knowledge graphs must be addressed. Future research
should determine methods for identifying and minimizing bias. In addition, en-
hancing explainability techniques will increase user confidence in the system by
assisting users in understanding the rationale behind generated answers.

Cross-Lingual and Multilingual QA: The assistance provided by the QA frame-
work can be enlarged [first284574; last15947] by incorporating additional dialects.
Further research needs to be done on cross-lingual capabilities with consideration
of cultural contexts, in order to improve system performance across different lan-
guages.

Several future directions emerge from this study. Firstly, investigating the ap-
plication of other deep learning architectures, such as Transformers and Graph

Neural Networks, may provide further improvements in question-answering per-

DOI: 10.4236/0alib.1113270

18 Open Access Library Journal

https://doi.org/10.4236/oalib.1113270

B. Muakuku Obono, W. Liu

formance. Secondly, exploring transfer learning and domain adaptation tech-

niques may enable the development of more robust question-answering systems.

Finally, conducting error analyses and investigating approaches to address com-

mon error types may provide valuable insights into improving question-answer-

ing performance.

Conflicts of Interest

The authors declare no conflicts of interest.

References

(1]

(4]

(10]

(11]

(12]
(13]
(14]

Abbas, F., Malik, M.K., Rashid, M.U. and Zafar, R. (2016) WikiQA—A Question An-
swering System on Wikipedia Using Freebase, Dbpedia and Infobox. 2016 6¢A Inter-
national Conference on Innovative Computing Technology (INTECH), Dublin, 24-
26 August 2016, 185-193. https://doi.org/10.1109/intech.2016.7845035

Ackermann, W.F. and Hilbert, D. (1951) Grundzuge der Theoretischen Logik.

Agarwal, R., Liang, C., Schuurmans, D. and Norouzi, M. (2019) Learning to Gener-
alize from Sparse and Underspecified Rewards. International Conference on Machine
Learning, Long Beach, 9-15 June 2019, 130-140.

Alvarez-Melis, D. and Jaakkola, T.S. (2017) Tree-Structured Decoding with Doubly-

Recurrent Neural Networks. International Conference on Learning Representations,
Toulon, 24-26 April 2017, 50-62.

Azmy, M., Shi, P, Lin, J. and Ilyas, I. (2018) Farewell Freebase: Migrating the Simple
Questions Dataset to DBpedia. Proceedings of the 27 th International Conference on
Computational Linguistics, Santa Fe, 20-26 August 2018, 2093-2103.

Bahdanau, D., Cho, K. and Bengio, Y. (2014) Neural Machine Translation by Jointly
Learning to Align and Translate.

Bao, J., Duan, N,, Yan, Z., Zhou, M. and Zhao, T. (2016) Constraint-Based Question
Answering with Knowledge Graph. Proceedings of COLING 2016, the 26th Interna-
tional Conference on Computational Linguistics. Technical Papers, Osaka, 11-16 De-
cember 2016, 2503-2514.

Hamilton, W.L. (2020) Graph Representation Learning. Morgan & Claypool Publish-
ers.

Lin, J., Zhao, Y., Huang, W., Liu, C. and Pu, H. (2020) Domain Knowledge Graph-
Based Research Progress of Knowledge Representation. Neura/ Computing and Ap-
plications, 33, 681-690. https://doi.org/10.1007/s00521-020-05057-5

Yu, H., Li, H., Mao, D. and Cai, Q. (2020) A Relationship Extraction Method for Do-
main Knowledge Graph Construction. World Wide Web, 23, 735-753.
https://doi.org/10.1007/s11280-019-00765-y

Kejriwal, M., Sequeda, J. and Lopez, V. (2019) Knowledge Graphs: Construction,
Management and Querying. Semantic Web, 10, 961-962.
https://doi.org/10.3233/sw-190370

Kingma, D.P. and Ba, J. (2014) Adam: A Method for Stochastic Optimization.

Fensel, D., et al (2020) Knowledge Graphs. Springer.

Hogan, A. (2020) Resource Description Framework. In: Hogan, A., Ed., The Web of
Data, Springer International Publishing, 59-109.
https://doi.org/10.1007/978-3-030-51580-5 3

DOI: 10.4236/0alib.1113270

19 Open Access Library Journal

https://doi.org/10.4236/oalib.1113270
https://doi.org/10.1109/intech.2016.7845035
https://doi.org/10.1007/s00521-020-05057-5
https://doi.org/10.1007/s11280-019-00765-y
https://doi.org/10.3233/sw-190370
https://doi.org/10.1007/978-3-030-51580-5_3

B. Muakuku Obono, W. Liu

(15]

[16]

(17]

Saccenti, R. (2022) Le molteplici stagioni del classico: Manoscritti e contenuti del De
Interpretatione fra Boezio e Tommaso d’Aquino. Rivista di Storia Della Filosofia, 77,
238-272.

Gori, M. and Scarselli, F. (1998) Are Multilayer Perceptrons Adequate for Pattern
Recognition and Verification? JEEE Transactions on Pattern Analysis and Machine
Intelligence, 20, 1121-1132. https://doi.org/10.1109/34.730549

Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural Com-
putation, 9, 1735-1780. https://doi.org/10.1162/neco0.1997.9.8.1735

DOI: 10.4236/0alib.1113270

20 Open Access Library Journal

https://doi.org/10.4236/oalib.1113270
https://doi.org/10.1109/34.730549
https://doi.org/10.1162/neco.1997.9.8.1735

	Knowledge Graph Question-Answering Method Based on Neural Networks
	Abstract
	Subject Areas
	Keywords
	1. Introduction
	2. Literature Review
	2.1. Knowledge Graphs: Definition and Applications
	What is a Knowledge Graph? Definition

	2.2. Question-Answering Systems: Overview and Challenges
	2.3. Neural Network Approaches for Knowledge Graph Question-Answering

	3. Methodology
	3.1. Methodology Overview
	Research Design

	3.2. Data Collection and Preprocessing
	3.3. Data Analysis Techniques
	3.4. Neural Network Architecture for Question-Answering
	3.5. Evaluation Metrics for QA Systems

	4. Data Description
	4.1. Experimental Setup and Configuration
	4.2. Training Configuration

	5. Conclusions
	5.1. Analysis
	5.2. Summary of Key Findings

	Contributions
	Future Directions
	Conflicts of Interest
	References

